78 research outputs found

    Diversity-induced resonance in a model for opinion formation

    Get PDF
    We study an opinion formation model that takes into account that individuals have diverse preferences when adopting an opinion regarding a particular issue. We show that the system exhibits "diversity-induced resonance” [C.J. Tessone et al. Phys. Rev. Lett. 97, 194101 (2006)], by which an external influence (for example advertising, or fashion trends) is better followed by populations having the right degree of diversity in their preferences, rather than others where the individuals are identical or have too different preferences. We support our findings by numerical simulations of the model in different network topologies and a mean-field type analytical theor

    Neighborhood models of minority opinion spreading

    Get PDF
    We study the effect of finite size population in Galam's model [Eur. Phys. J. B 25 (2002) 403] of minority opinion spreading and introduce neighborhood models that account for local spatial effects. For systems of different sizes N, the time to reach consensus is shown to scale as ln N in the original version, while the evolution is much slower in the new neighborhood models. The threshold value of the initial concentration of minority supporters for the defeat of the initial majority, which is independent of N in Galam's model, goes to zero with growing system size in the neighborhood models. This is a consequence of the existence of a critical size for the growth of a local domain of minority supporters

    Global firing induced by network disorder in ensembles of active rotators

    Full text link
    We study the influence of repulsive interactions on an ensemble of coupled excitable rotators. We find that a moderate fraction of repulsive interactions can trigger global firing of the ensemble. The regime of global firing, however, is suppressed in sufficiently large systems if the network of repulsive interactions is fully random, due to self-averaging in its degree distribution. We thus introduce a model of partially random networks with a broad degree distribution, where self-averaging due to size growth is absent. In this case, the regime of global firing persists for large sizes. Our results extend previous work on the constructive effects of diversity in the collective dynamics of complex systems.Comment: 8 pages, 6 figure

    A complementary view on the growth of directory trees

    Get PDF
    Trees are a special sub-class of networks with unique properties, such as the level distribution which has often been overlooked. We analyse a general tree growth model proposed by Klemm etal.[Phys. Rev. Lett. 95, 128701 (2005)] to explain the growth of user-generated directory structures in computers. The model has a single parameter q which interpolates between preferential attachment and random growth. Our analysis results in three contributions: first, we propose a more efficient estimation method for q based on the degree distribution, which is one specific representation of the model. Next, we introduce the concept of a level distribution and analytically solve the model for this representation. This allows for an alternative and independent measure of q. We argue that, to capture real growth processes, the q estimations from the degree and the level distributions should coincide. Thus, we finally apply both representations to validate the model with synthetically generated tree structures, as well as with collected data of user directories. In the case of real directory structures, we show that q measured from the level distribution are incompatible with q measured from the degree distribution. In contrast to this, we find perfect agreement in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth of real directory structures as it fails to reproduce the level distribution. This insight can be generalised to point out the importance of the level distribution for modeling tree growt

    Global firing induced by network disorder in ensembles of activerotators

    Get PDF
    Abstract.: We study the influence of repulsive interactions on an ensemble of coupled excitable rotators. We find that a moderate fraction of repulsive interactions can trigger global firing of the ensemble. The regime of global firing, however, is suppressed in sufficiently large systems if the network of repulsive interactions is fully random, due to self-averaging in its degree distribution. We thus introduce a model of partially random networks with a broad degree distribution, where self-averaging due to size growth is absent. In this case, the regime of global firing persists for large sizes. Our results extend previous work on the constructive effects of diversity in the collective dynamics of complex system

    Diversity-induced resonance

    Get PDF
    We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.Comment: 4 pages, 3 figure

    Non-universal results induced by diversity distribution in coupled excitable systems

    Get PDF
    We consider a system of globally coupled active rotators near the excitable regime. The system displays a transition to a state of collective firing induced by disorder. We show that this transition is found generically for any diversity distribution with well defined moments. Singularly, for the Lorentzian distribution (widely used in Kuramoto-like systems) the transition is not present. This warns about the use of Lorentzian distributions to understand the generic properties of coupled oscillators

    Chaotic synchronizations of spatially extended systems as non-equilibrium phase transitions

    Full text link
    Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. The synchronization transition is studied as a non-equilibrium phase transition, and its critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of the dynamical units composing each system. In particular, continuous and discontinuous local maps are considered. In both cases the transitions are of the second order with critical indexes varying with the exponent characterizing the interaction range. For discontinuous maps it is numerically shown that the transition belongs to the {\it anomalous directed percolation} (ADP) family of universality classes, previously identified for L{\'e}vy-flight spreading of epidemic processes. For continuous maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-neighbor case, the identification of the corresponding universality classes remains an open problem. Finally, to test the influence of deterministic correlations for the studied synchronization transitions, the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework and for the discontinuous case, it is possible to derive an effective Langevin description that corresponds to that proposed for ADP.Comment: 12 pages, 5 figures Comments are welcom

    Evolutionary and Ecological Trees and Networks

    Get PDF
    Evolutionary relationships between species are usually represented in phylogenies, i.e. evolutionary trees, which are a type of networks. The terminal nodes of these trees represent species, which are made of individuals and populations among which gene flow occurs. This flow can also be represented as a network. In this paper we briefly show some properties of these complex networks of evolutionary and ecological relationships. First, we characterize large scale evolutionary relationships in the Tree of Life by a degree distribution. Second, we represent genetic relationships between individuals of a Mediterranean marine plant, Posidonia oceanica, in terms of a Minimum Spanning Tree. Finally, relationships among plant shoots inside populations are represented as networks of genetic similarity.Comment: 6 pages, 5 figures. To appear in Proceedings of the Medyfinol06 Conferenc
    corecore